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Study on optical wave scattering from slightly Gaussian
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The optical wave scattering from the slightly rough surface of three-layer medium is studied. The formulaes
of the scattering coefficients for different polarizations are derived using the small perturbation method.
A Gaussian rough surface is presented for describing rough surface of layered medium, the influence
of the permittivity of layered medium, the mean layer thickness of intermediate medium, the surface
roughness parameters and the incident wavelength on the bistatic scattering coefficient of HH polarization
are obtained and discussed by numerical implementation.
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The study on optical wave scattering from rough sur-
faces has been the subject of intensive investigation over
the past several decades for its applications in a num-
ber of important research areas such as characterization
of films and optical interfaces, and the design of opti-
cal scanning instruments for use in the semiconductor
industry[1−7]. The theory of optical wave scattering by
statistically rough surfaces has been enriched by the cre-
ation of new analytical methods which include the small-
slope approximation[8], the titl-invariant theory of rough
surface scattering[9], the local perturbation method[10],
the full-wave-method analysis[11], the surface-field phase-
perturbation technique[12], two-scale models[13], and the
small perturbation method (SPM)[14,15].

In this letter, we consider optical wave scattering from
a rough interface in an arbitrary, plane-layered medium,
assumed a roughness small and gentle enough for SPM
to be applicable.

Consider the optical wave scattering from the rough
surface S between two half-spaces, which is described by
the equation z = f(�r), where �r = {x, y}. Without re-
striction of generality we suppose that the upper homo-
geneous half-space z > f(�r) (medium 1) is characterized
by a constant dielectric permittivity ε0 = 1 and μ0 = 1,
and the lower stratified half-space z < f(�r) is character-
ized by an arbitrary “depth-profile” of a complex dielec-
tric permittivity ε(z) with the depth of H . The random
function f(�r) is assumed to be statistically spatially ho-
mogeneous with zero mean value 〈f(�r)〉 = 0.

An incident plane monochromatic optical wave, with
frequency ω and wave vector �ki = {ki sin θi, 0,−ki cos θi},
ki = ω/c, illuminates the rough surface S from medium
1 with a given angle of incidence θi, as shown in Fig. 1.

The boundary conditions for electric field �E and mag-
netic field �H mean the continuity of their tangent com-
ponents on the boundary S,

�N × ( �H(2) − �H(1))S = �N × ( �E(2) − �E(1))S = 0, (1)

where �E(2) and �H(2) are the fields in the lower half-space
z < f(�r), �E(1) and �H(1) are the fields in the upper half-
space z > f(�r), and �N is a unit vector normal to the

surface S and directed upward,

�N = (�n − �s)(1 + s2)−1/2, (2)

�n is a unit vector of normal to the horizontal plane
Sp(z = 0), �s(�r) = ∇rf(�r) is a vector field of surface
slopes, ∇r = {∂/∂x, ∂/∂y}. Assuming that deviations
and slopes of surface S with respect to Sp are small
enough, we can expand the boundary conditions (1) in
powers of f(�r) and �s(�r), and retain the first-order terms
only[3],{

(�n × Δ �H)Sp = (�s × Δ �H)Sp − f(�n × ∂Δ �H
∂z )Sp

(�n × Δ �E)Sp = (�s × Δ �E)Sp − f(�n × ∂Δ�E
∂z )Sp

. (3)

Here Δ �H = �H(2) − �H(1) and Δ �E = �E(2) − �E(1). We can
represent the solution of the diffraction problem in the
form of

�H(1,2) = �H
(1,2)
0 + �H

(1,2)
1 , �E(1,2) = �E

(1,2)
0 + �E

(1,2)
1 . (4)

�E
(1)
0 , �H

(1)
0 ( �E

(2)
0 , �H

(2)
0 ) are the unperturbed wave fields in

the upper z > 0 (lower z < 0) half-space corresponding to
the specular reflection (refraction) at the plane boundary
Sp. They satisfy the uniform boundary conditions

�n × ( �H
(2)
0 − �H

(1)
0 )Sp = �N × ( �E

(2)
0 − �E

(1)
0 )Sp = 0. (5)

And �E
(1)
1 , �H

(1)
1 ( �E

(2)
1 , �H

(2)
1 ) are the corrections to the first

order of f(�r) and �s(�r), i.e., scattered fields in the upper
(lower) half-space, respectively. They satisfy the nonuni-
form boundary conditions

Fig. 1. Geometry of scattering from the Gaussian rough sur-
face of layered medium.
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{
(�n × Δ �H1)Sp = (�s × Δ �H0)Sp − f(�n × ∂Δ �H0

∂z )Sp = �JH

(�n × Δ �E1)Sp = (�s × Δ �E0)Sp − f(�n × ∂Δ�E0
∂z )Sp = �JE

,

(6)

where Δ �H0 = �H
(2)
0 − �H

(1)
0 , Δ �H1 = �H

(2)
1 − �H

(1)
1 , Δ �E0 =

�E
(2)
0 − �E

(1)
0 , and Δ �E1 = �E

(2)
1 − �E

(1)
1 . It is seen from

Eq. (6) that surface roughness leads to the appearance
of the effective electric and magnetic surface currents �JH

and �JE on the mean plane z = 0 which generate the scat-
tered fields. Currents �JH and �JE differ from the usually
used electric and magnetic currents only by sign and the
factor 4π/c.

We consider the incident monochromatic horizontally
polarized (TE) plane optical wave, which propagates in
medium 1, in the direction of wave vector �ki,

�E
(1)
in = �P0

√
μ0

kz
ei�ki·�R = �P0

√
μ0

kz
ei�k·�r−kzz, (7)

where �R = {�r, z} is a three-dimensional (3D) spatial ra-
dius vector, �P0 = �ey = (0, 1, 0) is a unit polarization
vector, �k = {k, 0, 0} is a two-dimensional (2D) projec-
tion of incident wave vector �ki =

{
�k,−kz

}
on the plane

z = 0, and kz =
√

k2
i μ0ε0 − k2 = ki cos θi.

Let us represent the scattered fields in the form of an
expansion over plane waves, i.e.,⎧⎨

⎩
�E

(1)
1 (�r, z) =

∫∫ √
μ0
qz

�̃E
(1)
1 (�q)ei(�q·�r+qzz)d�q

�H
(1)
1 (�r, z) =

∫∫ √
ε0
qz

�̃H
(1)
1 (�q)ei(�q·�r+qzz)d�q

. (8)

Here, �̃E
(1)
1 (�q), �̃H

(1)
1 (�q) are the amplitudes of scattered

plane waves propagating in the upper half-space in
the positive direction of z-axis, qz =

√
k2
i − q2 =√

k2
s − q2 = ki cos θs = ks cos θs is the vertical component

of the upward scattered field wave vector �ks = {�q, qz}.
The solution of Maxwell’s equations for scattered fields

with boundary conditions (6) has the form of[6]⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(�P �̃E
(1)
1 ) = 1

2ki

√
μ0
qz

(1 + Rs
h)(�P �̃JH)

+ 1
2

√
qz

μ0
(1 − Rs

h)[�P · (�n × �̃JE)]

(�P �̃H
(1)
1 ) = − 1

2ki

√
ε0
qz

(1 + Rs
v)(�P �̃JE)

+ 1
2

√
qz

ε0
(1 − Rs

v)[�P · (�n × �̃JH)]

, (9)

where �P is a horizontal unit vector orthogonal to
the plane of scattering, Rs

h and Rs
v are the reflection

coefficients of a horizontally or vertically polarized plane
wave with wave vector k

(1)
s from a layered medium with a

perfectly plane boundary z = 0, and �̃JE,H is the Fourier
transform of the surface current,

�̃JE,H = �̃JE,H(�q) =
1

(2π)2

∫∫
�JE,H(�r)e−i�q·�rd�r. (10)

Using the definitions of surface currents �JE,H and rep-
resenting the differences Δ �H0, Δ �E0 of zero-order fields

through corresponding reflection coefficients Ri
h and Ri

v
for an incident wave, we obtain scattering amplitudes for
a horizontally polarized incident wave⎧⎨

⎩
�P �̃E

(1)
1 = Shh = ik2

i
2
√

qzkz
f̃(�q − �k)Fhh(�q,�k)

�P �̃H
(1)
1 = Svh = ik2

i
2
√

qzkz
f̃(�q − �k)Fvh(�q,�k)

, (11)

where

f̃(�q − �k) =
1

(2π)2

∫∫
f(�r)e−i(�q−�k)·�rd�r (12)

and⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fhh = μ0(1 + Ri
h)(1 + Rs

h)
×

[
μ−μ0

μ ε0 sin θs sin θi + (ε − ε0) cosφ
]

−ε0(1 + Ri
h)(1 + Rs

h)(μ − μ0) cos θs cos θi cosφ

Fvh = {μ0(1 − Rs
v)(1 + Ri

h)(ε − ε0) cos θs

−ε0(1 − Ri
h)(1 + Rs

v)(μ − μ0) cos θi} sin φ

.

(13)

In these equations ε and μ are the limiting values of
ε(z → −0) and μ(z → −0), and their variations on the
vertical scale of f are neglected. The scattering ampli-
tudes Svv, Shv for a vertically polarized incident wave
can be obtained without any additional derivations sim-
ply by changing notations in previous equations: �E → �H ,
�H → − �E, h → v, μ → ε.

Specific incoherent scattering cross sections of up-going
waves are related with the corresponding scattering am-
plitudes by a simple equation[5,14],

σ0
αβ(�ks, �ki) = lim

Sp→∞
16π3

Sp
|qzkz |

〈
|Sαβ |2

〉

= πk4
i |Fαβ |2 Wf (�q − �k)

= πk4
i |ε − 1|2 |fαβ |2 Wf (�q − �k), (14)

where α and β characterize the polarization state of scat-
tered and incident wave, and Wf (�q−�k) is a spatial power
spectrum of surface roughness, �q − �k = ks sin θs cosφ −
ki sin θi.

For the simplest case of scattering by a rough boundary
of non-magnetic layered medium (μ = 1), the full set of
factors fαβ in an explicit form for different polarization
states of incident and scattered waves are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fhh = [1 + Rh(θi)] [1 + Rh(θs)] cosφ
fvh = −[1 + Rh(θi)] [1 − Rv(θs)] cos θs sin φ
fvv = 1

ε [1 + Rv(θi)] [1 + Rv(θs)] sin θi sin θs

−[1 − Rv(θi)][1 − Rv(θs)] cos θi cos θs cosφ
fhv = [1 − Rv(θi)] [1 + Rh(θs)] cos θi sin φ

,

(15)

where Rh and Rv are the specular reflection coefficients
for horizontal and vertical polarization waves from the
lower medium (z < 0) with a planar surface Sp (z = 0)
into the upper half-space respectively, φ is the azimuthal
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angle of scattering.
Equation (15) describes only the diffused part of scat-

tered energy and does not include the specular reflected
field, which is dominant at specular direction (θs = θi,
φ = 0). In the general case of an arbitrarily stratified
medium, Rh and Rv can be represented as

Rh =
R0h + R′

h

1 + R0hR′
h

, Rv =
R0v + R′

v

1 + R0vR′
v

, (16)

where R0h and R0v are the Fresnel reflection coefficients
from the planar surface between two homogeneous me-
dia (ε0 = 1 and ε), and R′ is the reflection coefficient
from the sub-surface layers (R′ = 0 for a uniform ε(z) =
constant homogeneous half-space z < 0).

Now consider the simplest case of a layered structure
(Fig. 1), namely a homogeneous layer of mean thickness
H , with complex dielectric permittivity ε = ε′ + iε′′,
overlying a homogeneous half-space (substrate) with a
complex dielectric permittivity constant ε1 = ε′1 + iε1

′′.
The reflection coefficients Rh and Rv from this structure
is given by Eq. (16), where R′ can be written as

R′
h(θ) = R1h(θ) exp(2ikH

√
ε − sin2 θ),

R′
v(θ) = R1v(θ) exp(2ikH

√
ε − sin2 θ) (17)

with the following expressions for the Fresnel reflection
coefficient R1(θ) from the surface z = −H of two media
with dielectric permittivities ε and ε1:

R1h(θ) =

√
ε − sin2 θ −

√
ε1 − sin2 θ√

ε − sin2 θ +
√

ε1 − sin2 θ
,

R1v(θ) =
ε1

√
ε − sin2 θ − ε

√
ε1 − sin2 θ

ε1

√
ε − sin2 θ + ε

√
ε1 − sin2 θ

. (18)

Here, Gaussian rough surface is selected as rough sur-
face of layered medium model and for Gaussian rough
surface, Wf in Eq. (14) is given by

Wf (K) =
δ2l

2
√

π
exp(−K2l2/4), (19)

where δ and l are the height standard deviation and cor-
relation length of the surface, respectively. Substituting
Eq. (19) into Eq. (14), specific incoherent scattering cross
sections of up-going waves from Gaussian rough surface
of layered medium is obtained according to the SPM,

σ0
αβ(�ks, �ki) =

π

2
√

π
k4
i |ε − 1|2 |fαβ |2 δ2l(−K2l2/4). (20)

In this way, we can obtain the scattering coefficient of
Gaussian rough surface of layered medium as

σ = 10 log10 σ0
αβ(�ks, �ki). (21)

We use Eq. (21) to study the optical wave scattering
from Gaussian rough surface of layered medium mainly.

The two conditions of SPM are

kδ < 0.3,
√

2δ/l < 0.3. (22)

In the following calculations, emphasis is put on exam-
ining the light scattering behavior for HH polarization
in the x-z plane (shown in Fig. 1), hence φ = 0, ki = ks,
and k = ki sin θs − ki sin θi. In calculating of Eq. (21),
the incident wavelength λ is chosen as 1.06 μm and the
incident angle is 30◦. We first compare the angular dis-
tribution of σ from the slightly rough surface of layered
medium with different ε1, and the other related param-
eters ε = 1.6 + 0.01i, H = 2λ, δ = 0.2/k, and l = 10/k.
It is observed that the scattering pattern corresponding
to different ε1 in Fig. 2 are almost same, which indi-
cates that the influence of ε1 on the bistatic scattering
coefficient is small.

In Fig. 3, the dependence of the scattering coefficient
σ on ε is plotted. It is shown that as the real part of ε
increases, the distribution of σ exhibits more gentle oscil-
lation for the same imaginary part, while the value of σ
is visually larger in the whole scattering angle region, ex-
cept for 60◦ ≤ θs ≤ 75◦. This phenomenon implies that
σ is sensitive to the varying of ε. Figure 3 also shows
the comparison of the angular scattering distribution of
scattering coefficient with different imaginary part of
ε. It can be seen that the discrepancy of the scattering
pattern is small, especially for the small and moderate
incident angles, and this is mainly due to the different
absorption for imaginary part of ε.

To further explore the important scattering character-
istic of the mutilayered surface model, we consider the
calculated behavior for different depth of H , and the
influence of H on the bistatic scattering coefficient is
depicted in Fig. 4, where ε = 1.6 + 0.01i, ε1 = 80 + 30i,
δ = 0.2/k, l = 10/k. It is shown that the scatter-
ing coefficient of the Gaussian surface with three-layer
permittivity will increase with decreasing H , and the
scattering pattern also shows small oscillation. It should
be noted that if H = 0, our simulation result will reduce
to the case of the conventional SPM for the light incident
upon the homogeneous medium.

Fig. 2. Scattering distribution of σ for different ε1.

Fig. 3. Scattering distribution of σ for different ε.
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The effect of surface roughness parameters (δ and l)
on the scattering coefficient of the slightly rough surface
with three layers is also examined. Figure 5 illustrates
the distribution of σ as a function of δ with different
scattering angles, where ε = 1.6 + 0.01i, ε1 = 80 + 30i,
H = 2λ, l = 10/k. It is observed that σ increases
with increasing δ for any incident angle. Another point
worth noting is the scattering pattern σ does not always
change that for any given value of δ within the limitation
of SPM.

We also calculated the scattering coefficient for
different scattering angles when l is varied, as shown
in Fig. 6 (δ = 0.2/k). It is found that the influence of
l on the backscattering coefficient is significant, that is,
in the directions close to specular scattering direction,
the value of σ is the same, while in other scattering
directions, the larger value of l is, the smaller σ is, es-
pecially for the large scattering angles away from the
specular direction. Figure 7 depicts the influence of inci-
dent wavelength λ on the bistatic scattering coefficient
under the condition of ε = 1.6 + 0.01i, ε1 = 80 + 30i,
H = 2λ, δ = 3 × 10−8 m, l = 3 × 10−6 m, θi = 30◦,
for θs = 50◦ and 60◦, respectively. It is observed that

Fig. 4. Scattering distribution of σ for different H .

Fig. 5. Scattering distribution of σ for different δ.

Fig. 6. Scattering distribution of σ for different l.

Fig. 7. Dependence of σ on λ for different scattering angles.

with smaller λ (< 2 μm), σ will increase rapidly with in-
creasing the incident wavelength, while σ exhibits a small
oscillation for the large incident wavelength for different
scattering angles.

In conclusion, the optical wave scattering from the
slightly rough surface of three-layer medium is inves-
tigated, the influence of the dielectric permittivity of
layered medium, the mean thickness of intermediate
medium, surface roughness parameters, and the incident
wavelength on the scattering coefficient is discussed.
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